En los años que has pasado estudiando, ¿te han explicado alguna vez cómo afrontar un problema? Si es que sí, has tenido suerte. Si es que no, quizá te hayan dado una receta y hayas tenido que aplicarla una y otra vez (como nuestros políticos).
Por si esta entrada llega a tiempo y te sirve de ayuda con algún problema (o por si algún político se equivoca y termina leyéndola) aquí van algunas ideas, adaptación de las propuestas por Miguel de Guzmán en su libro Como hablar demostrar y resolver en Matemáticas
Fase 1: Entiende el problema y familiarízate con la situación.
Analiza con cuidado el enunciado, si lo hay: Desmenuza cada frase del enunciado, de la citación del juzgado o (amado político) de esa carta que viene del Banco Central Europeo
Ten claro qué te piden y cuál es el problema a resolver: Si tienes que calcular un área o un perímetro, si tu inglés necesita mejorar la gramática o la pronunciación o (querido político) si la evinomia simergida supone el 19.2 % de tu ProductoInterior Bruto, si tienes más de 6 millones de parados,si tu modelo fiscal necesita una forma si tu sistema judicial es ineficiente, si...
Recopila todos los datos que te sea posible: Localiza los datos del ejercicio,busca informaciónsobre el coche que estás pensando comprar o (reverenciado político) hazte con la información que preparan el INE y Eurostar.
Trata de hacerte una imagen global del problema: Intenta hacer un esquema que recopile todas la información que tienes dibujaen un mapa dónde te ha dejado tirado el coche y qué alternativas tienes para llegar a tiempo al aeropuerto o (admirado político) procura ver más allá de tu carrera y tu partido.
Intenta no bloquearte y mantener la calma: No dejes que la ansiedad matemáticas pueda contigo, no te dejes llevar por el pánico si alguien se atraganta o (apreciado político) no te descompongas si un periodista te repite una y otra vez la misma pregunta.
Fase 2. Busca estrategias y diseña un plan.
Busca otros problemas similares y estudia cómo se han resuelto: Consulta apuntes, libros o web de fiar buscando un problema parecido, pregunta a tu hermano cómo resolvió aquel malentendido con Hacienda o (amigo político) entérate de cómo funciona en otras ciudades el préstamo de bicicletas.
Intenta empezar por lo fácil e ir aumentando gradualmente la dificultad:Empieza por el ejercicio del examen que mejor te sepas,pinta primero la habitacion más pequeña o (considerado político) comienza por eliminar esos cargos de confianza innecesarios antes de intentar adelgazar la estructura del Estado.
Experimenta y busca patrones que se repiten: Si tienes un ejercicio sobre números naturales mira a ver si puedes resolver por instrucción , si es la tercera vez que una novia te deja después de ver juntos los goonies háztelo mirar o (respetado político) si todas las obras terminan costando mas de lo presupuestado comienza a sospechar.
Plantéate un problema parecido y piensa cómo lo resolverías: Prueba a cambiar un poco el enunciado a ver si así te resulta más sencillo y te da alguna idea, piensa qué le aconsejarías a un amigo si fuera él quien tuviera el colesterol alto o (reputado político) imagina cómo actuarías ante el mismo caso de corrupción si se diera en otro partido.
Imagina que el problema no se ha resuelto y piensa por qué podría ser: Si tus soluciones son números complejod y deberían sernúmeros naturales quizá hayas planteado mal la ecuación, si has borrado archivos pero tu ordenador sigue yendo lento quizá necesites des fragmentar el disco duro o (prestigioso político) si "la cosa" sigue igual después de varios años de austeridad quizá hagan falta otras ideas.
Imagina que el problema ya está resuelto y piensa por qué podría ser: Si tus soluciones fueran números pares sería porque los impares no te sirven, si tu vecino ha bajado el volumen de la música quizá sea porque se lo has pedido amablemente o (valorado político) si te has ahorrado 50 millones a lo mejor es que has empezado a usar agua del grifo en lugar de embotellada.
Fase 3. Elige una estrategia y lleva a cabo tu plan.
Prueba con las ideas de la fase anterior que te parezcan más prometedoras:Empieza por la técnica que veas con más opciones de funcionar, prueba a regalarle flores antes que invitarla a ver una película de Chuck Norris o (electo político) prueba a destituir a tu compañero en lugar de esperar a que dimita.
No te des por vencido fácilmente, pero tampoco te obceques en una sola idea: No abandones el problema al poco tiempo pero tampoco dediques toda la tarde a un solo ejercicio si tienes otros que resolver, no des el partido por perdido con el primer gol en contra pero tampoco te desgastes demasiado si pierdes claramente y tienes otro partido cerca u (honrado político) intenta llevar adelante tu proyectopero no más allá de lo razonable.
No lances las campanas al vuelo antes de tiempo; pon a prueba tu solución y asegúrate de que es buena: Si has calculado una función que debe parecerse al seno y su valor en x=0−84
Si no consigues avanzar, prueba a dejar reposar el problema y volver a él más adelante: Cambia a otro ejercicio y deja éste para el final, pasa a arreglar la persianay vuelve con el grifo más tarde o (íntegro político) olvida por un día las luchas de partido y sal a la calle.
Fase 4. Aprende del problema.
Analiza los pasos que has dado y el camino que has seguido: Repasa tu resolución del ejercicio, piensa en cómo has conseguido mantenerte en forma o (digno político) estudia qué has hecho para mejorar tu gestión.
Comprueba las decisiones que has tomado y para qué te han servido: Por qué ha sido útil elegir esta técnica y no otra, qué has conseguido al mantenerte firme en la reunión de la comunidad de vecinos u (honorable político) en qué te ha ayudado una gestión más transparente.
Intenta entender por qué tu estrategia ha funcionado o no: Por qué no has conseguido encontrar el máximo de tu función haciendo una integral, qué ha hecho que tu banco cambie de opinión o (cumplidor político) por qué los ciudadanos valoran mal tu actuación política.
Reflexiona sobre cómo te has enfrentado al problema: dónde te has equivocado o has estado a punto de hacerlo, en qué crees que puedes mejorar en un futuro o (recto político) piensa si has actuado como deberías.
Piensa si esas ideas pueden serte útiles para otros problemas: Anota las técnicas que has usado para resolver este ejercicio, acuérdate de lo que has aprendido de este problema o (cabal político) busca otros problemas que puedas resolver de manera parecida.
Y ahora a practicar:
Fase 4. Aprende del problema.
Analiza los pasos que has dado y el camino que has seguido: Repasa tu resolución del ejercicio, piensa en cómo has conseguido mantenerte en forma o (digno político) estudia qué has hecho para mejorar tu gestión.
Comprueba las decisiones que has tomado y para qué te han servido: Por qué ha sido útil elegir esta técnica y no otra, qué has conseguido al mantenerte firme en la reunión de la comunidad de vecinos u (honorable político) en qué te ha ayudado una gestión más transparente.
Intenta entender por qué tu estrategia ha funcionado o no: Por qué no has conseguido encontrar el máximo de tu función haciendo una integral, qué ha hecho que tu banco cambie de opinión o (cumplidor político) por qué los ciudadanos valoran mal tu actuación política.
Reflexiona sobre cómo te has enfrentado al problema: dónde te has equivocado o has estado a punto de hacerlo, en qué crees que puedes mejorar en un futuro o (recto político) piensa si has actuado como deberías.
Piensa si esas ideas pueden serte útiles para otros problemas: Anota las técnicas que has usado para resolver este ejercicio, acuérdate de lo que has aprendido de este problema o (cabal político) busca otros problemas que puedas resolver de manera parecida.
Y ahora a practicar:
Para que no suene demasiado a un texto de autoayuda, vamos a terminar esta entrada proponiéndote un problema. Por ejemplo:
¿Cuántos números capicúas de 5 cifras se pueden formar de manera que el número tenga 4 dígitos iguales y el otro diferente?
Si te apetece poner en práctica las ideas anteriores, cuéntanos cómo las has usado en este problema. Puedes hacerlo por cualquiera de nuestras vías de contacto o en los comentarios. ¡Ánimo!
Recuerda que puedes seguirnos enTwitter, Facebook y Google+.
Nota
¿Cuántos números capicúas de 5 cifras se pueden formar de manera que el número tenga 4 dígitos iguales y el otro diferente?
Si te apetece poner en práctica las ideas anteriores, cuéntanos cómo las has usado en este problema. Puedes hacerlo por cualquiera de nuestras vías de contacto o en los comentarios. ¡Ánimo!
Recuerda que puedes seguirnos enTwitter, Facebook y Google+.
Nota
1: Esta entrada participa en la edición 4.12310 del Carnaval de Matemáticas, cuyo blog anfitrión esGeometría dinámica (el porqué de ese número está explicado en una de nuestras entradas anteriores).
Nota 2: Si te parece interesante, puedes ayudar a divulgar esta entrada votándola en Menéame.
Nota 3: También puedes ayudar a divulgar esta entrada votándola en Divoblogger.
Nota 2: Si te parece interesante, puedes ayudar a divulgar esta entrada votándola en Menéame.
Nota 3: También puedes ayudar a divulgar esta entrada votándola en Divoblogger.
Para saber más:
En la web de la Cátedra UCM Miguel de Guzmán puedes encontrar algunos de sus materiales sobre resolución de problemas. Las ideas de esta entrada las usé algunos años en un curso cero y me volvieron a la cabeza con la muy interesante entrada que Gaussianos publicó la semana pasada, "Diez formas de pensar como un matemático" y con varios tuits de@EDocet sobre cómo estudiar matemáticas (1, 2, 3 y 4).
El problema propuesto está tomado de la muy recomendable sección "Retos matemáticos" de Divulgamat. Ya has visto en otras entradas que en matemáticas muchos problemas continúan sin resolver; si te animas a buscar la fama resolviendo alguno de ellos, puedes encontrar una colección en el Open Problem Garden.
La referencia clásica sobre cómo plantear y resolver problemas es el libro, del mismo título, del matemático húngaro George Pólya, del que puede interesarte este resumen. También pueden interesarte losconsejos para resolver problemas de Javier Pérez, de la Universidad de Granada.
En la web de la Cátedra UCM Miguel de Guzmán puedes encontrar algunos de sus materiales sobre resolución de problemas. Las ideas de esta entrada las usé algunos años en un curso cero y me volvieron a la cabeza con la muy interesante entrada que Gaussianos publicó la semana pasada, "Diez formas de pensar como un matemático" y con varios tuits de@EDocet sobre cómo estudiar matemáticas (1, 2, 3 y 4).
El problema propuesto está tomado de la muy recomendable sección "Retos matemáticos" de Divulgamat. Ya has visto en otras entradas que en matemáticas muchos problemas continúan sin resolver; si te animas a buscar la fama resolviendo alguno de ellos, puedes encontrar una colección en el Open Problem Garden.
La referencia clásica sobre cómo plantear y resolver problemas es el libro, del mismo título, del matemático húngaro George Pólya, del que puede interesarte este resumen. También pueden interesarte losconsejos para resolver problemas de Javier Pérez, de la Universidad de Granada.
No hay comentarios:
Publicar un comentario